再結晶
再結晶
再結晶是在較高溫度下加熱使晶粒重新形核長大的過程,可作為使晶粒微細化的 手段,來改變晶體性能。也是改變某些金屬和合 金晶體結構從而改善其性能的一種手段。同一 物質在不同的溶劑中結晶時,其晶型不一樣,利 用這一性質,來制備不同的晶型。
新晶粒不斷長大,直至原來的變形組織完全消失,金屬或合金的性能也發生顯著變化,這一過程稱為再結晶。過程的驅動力也是來自殘存的形變貯能。與金屬中的固態相變類似,再結晶也有轉變孕育期,但再結晶前后,金屬的點陣類型無變化。
再結晶核心一般通過兩種形式產生。其一是原晶界的某一段突然弓出,深入至畸變大的相鄰晶粒,在推進的這部分中形變貯能完全消失,形成新晶核。其二是通過晶界或亞晶界合并,生成一無應變的小區──再結晶核心。四周則由大角度邊界將它與形變且已回復了的基體分開。大角度邊界遷移時,核心長大。核心朝取向差大的形變晶粒長大,故再結晶過程具有方向性特征。再結晶后的顯微組織呈等軸狀晶粒,以保持較低的界面能。
隨著變形量的增加,位錯密度繼續增加,內部儲存能也繼續增加。當變形量達到一定程度時,將使奧氏體發生另一種轉變—動態再結晶。 ·動態再結晶的發生與發展,使更多的位錯消失,奧氏體的變形抗力下降,直到奧氏體全部發生了動態再結晶,應力達到了穩定值。
金屬在熱加工后,由于形變使晶粒內部存在形變儲存能,使系統處于不穩定的高能狀態,因此在變形隨后的等溫保持過程中,以變形儲存能為驅動力,通過熱活化過程再結晶成核和長大而再生成新的晶粒組織,使系統由高能狀態轉變為較穩定的低能狀態,這個自發的過程就是靜態再結晶。
經冷變形后的金屬在溫度作用下,基體中具有大角度晶界的新晶核形成和長大的過程,即靜態再結晶。將冷變形金屬加熱到一定的溫度(0.35~0.5T熔)并停留一段時間,能使變形組織的晶粒重新變成無畸變的新晶粒,同時金屬的力學性能也恢復到未受加工前的狀態。再結晶過程分為晶核形成、晶核長大和再結晶完成3個階段。
|